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Free-vibration characteristics of cantilever non-circular curved panels are analyzed by
using the differential quadrature method (DQM) in this paper. The equations of motion of
a curved panel are based on the Love’s hypothesis and are expressed in an orthogonal
curvilinear co-ordinate system. By applying the differential quadrature formulation and the
proposed modified relationships for specified boundary conditions, the free-vibration
equations of motion of the curved panel are transformed to a set of algebraic equations.
Natural frequencies of a cantilever flat plate and a circular curved panel are obtained for
verifying the applicability of the present approach. Good convergent trend and accuracy
are observed. Effects of shallowness, thickness and aspect ratios on the natural frequencies
of a cantilever curved panel are also investigated. Furthermore, natural frequencies of
parabolic curved panels are obtained. In all cases studied, the efficiency and convenience of
the DQM are illustrated.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

For high structural performance of advanced machinery or engineering structures,
vibration characteristics of shells have drawn attention for studying. Love postulated the
first approximation of the classical thin shell theory to investigate the behavior of the
small-amplitude free vibration for a thin elastic shell [1]. Olson and Lindberg [2] obtained
the natural frequencies of uniform and tapered fan blades with various boundary
conditions by the finite element method, and some experimental results were also
presented to verify the numerical results. Leissa [3] summarized the works of the vibration
aspects of thin shells before the 1970s. Leissa et al. [4, 5] and Wang [6] solved the vibration
problems of cantilever and rotating blades by the Ritz method. Leissa and Ewing [7]
compared the vibration frequencies of turbomachinery blades between beam and shell
theories. The deviation of the fundamental frequency between these two models is not
significant for a blade with a large aspect ratio; however, the discrepancy is obvious for a
blade with a small aspect ratio. Lim and Liew [8] analyzed the flexural vibration of a
cylindrical shell with rectangular planform by the pb-2 Ritz method. In a more recent
survey, Liew et al. [9] reviewed the development of research in vibration of shallow shells.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The validity and range of applicability for three kinds of shell theory, Kirchhoff–Love,
first order and higher order, are examined.

Characteristics of engineering problems are of complex geometry and loading of
different types. Analytical solutions of these problems usually cannot be obtained easily.
With the ever-growing advancement of faster computers, numerical procedures are
alternative for obtaining solutions to these problems. A variety of numerical methods are
available today for engineering analysis, such as: finite difference method, finite element
method, and boundary element method. These methods provide accurate results when
sufficiently fine meshes are used. However, this may consume longer computation time.
The differential quadrature method (DQM), which transforms governing equations of
differential form to matrix form by using weighting matrices, is a computationally efficient
method. The DQM requires small amount of computer capacity and is able to provide
accurate results. The DQM first introduced by Bellman and Casti [10] is an efficient
numerical method for rapid solutions of linear and non-linear partial differential
equations. Bert et al. [11–13] applied this method to structural problems involving fourth
order partial differential equations. Since then, many researchers have applied this method
in many engineering areas. Sherbourne and Pandey [14] analyzed buckling of beams and
composite plates. Shu and Richards [15] solved the two-dimensional incompressible
Navier–Stokes equations. Gutierrez and Laura [16] solved the Helmholtz equation in a
parallelogrammic domain with mixed boundary conditions. In 1996, Bert and Malik [17]
reviewed the development of DQM in computational mechanics. Three-dimensional
elasticity solutions for free vibrations of rectangular plates were obtained by Malik and
Bert [18], and Liew and Teo [19]. Choi et al. [20] studied the dynamic behavior of spinning
Timoshenko beams. Choi and Chou [21] investigated elastically supported turbomachin-
ery blades by the modified differential quadrature method.

There are, however, some drawbacks in the original DQM. For problems involving
fourth or higher order differential equations for which two or more boundary conditions
need to be specified at each boundary point, numerical error is induced by using the direct
deletion or d-point method in the original DQM since boundary conditions are not exactly
satisfied. To overcome this problem, different approaches had been proposed [22–27].
Wang and Bert [22] and Bert et al. [23] incorporated the boundary conditions in the
weighting coefficient matrix in the context of beam and plate vibration problems. Malik
and Bert [24] presented a detailed methodology for implementing multiple boundary
conditions in DQM. However, there were still some limitations in their approach. It could
not yield results of any dependable accuracy for rectangular plates having two or more
adjacent free edges. Shu and Du [25, 26] proposed an approach that directly couples the
boundary conditions with the governing equations, and obtained accurate results for plate
without free corners. However, for plate configuration with at least one free corner, a new
grid point distribution has to be used for obtaining more accurate results. Choi and Chou
[21, 28] proposed a new approach in using the DQM. Modified relationships were
proposed and a new formulation process was presented in this approach, which is different
from that used by Wang and Bert [22] and Bert et al. [23]. High efficiency and accuracy
have been illustrated in vibrational analysis of beams and turbomachinery blades by using
this new approach.

In this paper, the dynamic characteristics of cantilever curved panels are studied by
using the DQM and by following the approach used by Choi and Chou [21]. Modified
relationships are used for specified boundary conditions and are integrated with the
governing equations of motion. Natural frequencies of a cantilever flat plate and a circular
curved panel are obtained for verifying the applicability of the present approach. Effects of
shallowness, thickness and aspect ratios on the natural frequencies of a cantilever curved
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panel are also investigated. Furthermore, natural frequencies of parabolic curved panels
are obtained.

2. DQM FOR SHELL PROBLEMS

The basic concept of the DQM is that the derivative of a function, with respect to a
space variable at a given sampling point, is approximated as a weighted linear sum of the
function values at all of the sampling points in the domain of that variable. Differential
equations are then transformed to a set of algebraic equations for time-independent
problems and a set of ordinary differential equations in time for initial/boundary-value
problems.

The configuration of a thin non-circular curved panel is shown in Figure 1. The
orthogonal curvilinear co-ordinate system x–s–z is used. The principal radius of curvature
at the mid-surface (z = 0) of the panel is denoted by RsðsÞ: In general, a panel is meshed by
Nx and Ns sampling points in the x and s directions respectively. The total number of
sampling points is Nx � Ns in the domain of the panel. The co-ordinates of sampling
points are chosen as [15]

xi ¼
a

2
ð1� cos½ði � 1Þp=ðNx � 1Þ�Þ; i ¼ 1; 2; . . . ; Nx; ð1aÞ

sj ¼
b

2
ð1� cos½ðj � 1Þp=ðNs � 1Þ�Þ; j ¼ 1; 2; . . . ; Ns; ð1bÞ

where a and b are the lengths of the panel in the x and s directions respectively. The
sampling points for a curved panel are distributed as in Figure 2.

For a two-dimensional problem, two weighting matrices corresponding to differentia-
tion with respect to x and to s are represented in the DQ formulation as, respectively,

@f xi; sj

� �
@x

¼
XNx

m¼1

c
xð Þ

im f xm; sj

� �
for

i ¼ 1; 2; . . . ; Nx;

j ¼ 1; 2; . . . ; Ns;
ð2aÞ

@f xi; sj

� �
@s

¼
XNs

m¼1

c
sð Þ

jm f xi; smð Þ for
i ¼ 1; 2; . . . ; Nx;

j ¼ 1; 2; . . . ; Ns;
ð2bÞ

where c
ðxÞ
im and c

ðsÞ
jm are weighting matrices, and are Nx and Ns square matrices respectively.

For deriving the weighting matrices, the value of the function f ðx; sÞ can be approximated
b

a

R (s)

x

s
z

s

Figure 1. Configuration of a non-circular curved panel with a rectangular planform.
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Figure 2. Distribution and numbering of sampling points for a non-circular curved panel.
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by the polynomial Fklðx; sÞ with the following form:

Fklðx; sÞ ¼ gkðxÞ�hlðsÞ; ð3Þ
where gkðxÞ and hlðsÞ are the one-dimensional Lagrangian interpolation functions
corresponding to x and s directions, respectively, and they are represented as [15]

gkðxÞ ¼
MðxÞ

ðx � xkÞM	ðxkÞ
; k ¼ 1; 2; . . . ; Nx; ð4aÞ

hlðsÞ ¼
LðsÞ

ðs � slÞL	ðslÞ
; l ¼ 1; 2; . . . ; Ns; ð4bÞ

where

MðxÞ ¼
YNx

m¼1

ðx � xmÞ; M	ðxkÞ ¼
YNx

m¼1
m=k

ðxk � xmÞ; k ¼ 1; 2; . . . ; Nx;

and

LðsÞ ¼
YNs

m¼1

ðs � smÞ; L	ðslÞ ¼
YNs

m¼1
m=l

ðsl � smÞ; l ¼ 1; 2; � � � ; Ns:

By introducing the test functions Fklðx; sÞ of equation (3) into equations (2a,b) for f ðx; sÞ;
the weighting matrices can be obtained as [15]

c
ðxÞ
im ¼ M	ðxiÞ

ðxi � xmÞM	ðxmÞ
; i=m and c

ðxÞ
ii ¼ �

XNx

m¼1
m=i

c
ðxÞ
im ; i;m ¼ 1; 2; . . . ; Nx

and

c
ðsÞ
jm ¼ L	ðsjÞ

ðsj � smÞL	ðsmÞ
; j=m and c

ðsÞ
jj ¼ �

XNs

m¼1
m=j

c
ðsÞ
jm ; j;m ¼ 1; 2; . . . ; Ns:

As described above, the function values f ðxi; sjÞ form an Nx � Ns matrix and for matrix
manipulation, it has to be rearranged as a column vector

*f ¼ f1;1; f2;1; � � � ; fNx;1; f1;2; f2;2; . . . ; fNx;2; . . . ; f1;Ns
; f2;Ns

; . . . ; fNx;Ns

� �T
;
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where fi;j ¼ f ðxi; sjÞ: For this purpose, the weighting matrices c
ðxÞ
im and c

ðsÞ
jm are rearranged

to the new weighting matrices %WW X and %WW S as

%WW X ¼

c
ðxÞ
im

h i
0½ � � � � 0½ �

0½ � c
ðxÞ
im

h i
� � � 0½ �

..

. ..
. . .

. ..
.

0½ � 0½ � � � � c
ðxÞ
im

h i

2
666666664

3
777777775
; i;m ¼ 1; 2; . . . ; Nx

and

%WW S ¼

c
sð Þ
11 I½ � c

sð Þ
12 I½ � � � � c

sð Þ
1Ns

I½ �

c
sð Þ
21 I½ � c

sð Þ
22 I½ � � � � c

sð Þ
1Ns

I½ �

..

. ..
. . .

. ..
.

c
sð Þ

Ns1
I½ � c

sð Þ
Ns2

I½ � � � � c
sð Þ

NsNs
I½ �

2
6666664

3
7777775
;

where [I ] is an identity matrix of dimension Nx, and %WW X and %WW S are both square matrices
of dimension Nx�Ns: It is seen that there are many zeros in the new weighting matrices.
Using the technique for sparse matrices, the storage requirement in the computational
process is reduced. By using the new weighting matrices, the DQ formulation and the
modified relationships described below can be easily incorporated.

The DQ formulation of two-dimensional problems can be rewritten in terms of the new
weighting matrices %WW X and %WW S and the rearranged function vector *f as

@ *f

@x
¼ %WW X

*f and
@ *f

@s
¼ %WW S

*f: ð5Þ

2.1. MODIFIED RELATIONSHIPS

In this paper, curved panels with classical boundary conditions are considered. Modified
relationships are deduced by considering boundary conditions. As an example, the
relationship between the displacement w and the slope along the x-axis, yx; is

yx ¼ � @w

@x
:

In the discretized domain, the modified relationship [21] for the above expression is
written as

*yyx ¼ � %WW X
%BB
ðwÞ

*w; ð6Þ

where %BB
ðwÞ

is the modified matrix corresponding to the boundary conditions of the

displacement w. The modified matrix %BB
ðwÞ

is obtained from an identity matrix of
dimension Nx�Ns by setting zero to elements corresponding to locations of null boundary
value of w. Modified relationships for other variables are derived in a similar manner.

For a cantilever curved panel that is clamped at the edge x = 0 and is free at the other
three edges, the displacements are zero at the sampling points along the edge x = 0, i.e.,

wi ¼ 0; where i ¼ 1; Nx þ 1; 2Nx þ 1; . . . ; ðNs � 1ÞNx þ 1:
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These i’s correspond to the sampling point numbers at the edge x = 0 as shown in
Figure 2. Then for this case, the modified matrix %BB

ðwÞ
is obtained from an identity matrix

by setting the following diagonal element to zeros:

B
ðwÞ
ii ¼ 0; where i ¼ 1; Nx þ 1; 2Nx þ 1; . . . ; ðNs � 1ÞNx þ 1:

3. PROBLEM FORMULATION

By following the Kirchhoff–Love hypothesis, the displacement field of the curved panel
shown in Figure 1 is assumed as [1]

Uðx; s; zÞ ¼ uðx; sÞ þ zbxðx; sÞ; ð7aÞ

Vðx; s; zÞ ¼ vðx; sÞ þ zbsðx; sÞ; Wðx; s; zÞ ¼ wðx; sÞ; ð7b; cÞ
where u, v and w are displacements of the mid-surface of the panel; z is the
distance measured from the mid-surface; bx and bs are the angles of rotation for
x and s directions, respectively. If the shear deformation is neglected, bx and bs are
represented as

bx ¼ � @w

@x
;

bs ¼ � @w

@s
þ v

Rs

;

Substituting equations (7a–c) into strain–displacement relations referred to an
orthogonal curvilinear co-ordinate system, one obtains the strain components exx; ess

and exs as

exx ¼ e8xx þ zkxx; ess ¼ e8ss þ zkss; exs ¼ e8xs þ zkxs; ð8a� cÞ
where e8xx; e

8
ss and exs8 are the strains of the mid-surface of the panel; kxx; kss; and kxs are

the curvatures. They are given as

exx8 ¼
@u

@x
; ess8 ¼

@v

@s
þ w

Rs

; exs8 ¼
@u

@s
þ @v

@x
;

kxx ¼ @bx

@x
; kss ¼

@bs

@s
; kxs ¼

@bx

@s
þ @bs

@x
:

Stresses acting on a shell element of isotropic material are given as

sxx ¼ E

1� n2
exx þ nessð Þ; sss ¼

E

1� n2
ess þ nexxð Þ; ð9a; bÞ

sxs ¼ Gexs; ð9cÞ
where n is Poisson’s ratio, E and G are Young’s and shear moduli respectively.

By integrating all stresses acting on a shell element whose dimensions are infinitesimal in
the x and s directions, the membrane forces Nxx; Nss and Nxs are given as

Nxx ¼ Kðexx8þ ness8Þ; Nss ¼ Kðess8þ nexx8Þ; ð10a; bÞ

Nxs ¼ Nsx ¼ Kð1� nÞ
2

exs8 ð10cÞ

and the bending moments Mxx; Mss and Mxs as

Mxx ¼ Dðkxx þ nkssÞ; Mss ¼ Dðkss þ nkxxÞ; ð11a; bÞ
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Mxs ¼ Msx ¼ Dð1� nÞ
2

kxs; ð11cÞ

where the membrane and bending stiffnesses are, respectively, K ¼ Ehðx; sÞ=ð1� n2Þ and
D ¼ Eh3ðx; sÞ=½12ð1� n2Þ�; and hðx; sÞ is the thickness of the panel.

By using Hamilton’s principle, the governing equations of motion of the curved panel
can be derived as [1]

@Nxx

@x
þ @Nxs

@s
¼ rh .uu; ð12aÞ

@Nsx

@x
þ @Nss

@s
þ Qsz

Rs

¼ rh.vv; ð12bÞ

@Qxz

@x
þ @Qsz

@s
þ Nss

Rs

¼ rh .ww; ð12cÞ

where r is the material density, and Qxz and Qsz are transverse shear forces and are defined
by

Qxz ¼
@Mxx

@x
þ @Msx

@s
; ð13aÞ

Qsz ¼
@Mxs

@x
þ @Mss

@s
: ð13bÞ

The DQ formulation can be easily introduced into equations (12) and (13) by
incorporating modified relationships. From equations (13), we have

*Qxz ¼ %WW X
%BB
ðMxxÞ *Mxx þ %WW S

%BB
ðMxsÞ *Mxs; ð14aÞ

*Qsz ¼ %WW X
%BB
ðMxsÞ *Mxs þ %WW S

%BB
ðMssÞ *Mss: ð14bÞ

By assuming free vibration with frequency o for the curved panel and using equations
(14), equations (12) are transformed to algebraic equations as

%WW X
%BB
ðNxxÞ *Nxx þ %WW S

%BB
ðNxsÞ *Nxs ¼ �ro2 %HH *u; ð15aÞ

%WW X
%BB
ðNxsÞ *Nxs þ %WW S

%BB
ðNssÞ *Nss

þ %RR
�1

s
%WW X

%BB
ðMxsÞ *Mxs þ %WW S

%BB
ðMssÞ *Mss

h i
¼ �ro2 %HH *v; ð15bÞ

%WW X
%WW X

%BB
ðMxxÞ *Mxx þ %WW S

%BB
ðMxsÞ *Mxs

h i

þ %WW S
%WW X

%BB
ðMxsÞ *Mxs þ %WW S

%BB
ðMssÞ *Mss

h i
þ %RR

�1

s
*Nss ¼ �ro2 %HH *w; ð15cÞ

where %WW X and %WW S are the rearranged weighting matrices with respect to x- and s-co-
ordinates, respectively; %HH and %RRs are diagonal matrices corresponding to varying thickness
and curvature of the panel respectively. %BB

ð�Þ
are modified matrices that are determined

from boundary conditions and are similar to %BB
ðwÞ

described in equation (6). The same
formulation process is also applied to equations (7)–(11). The final system equations can
be combined and represented as

½KG�f *Ug ¼ o2½MG�f *Ug; ð16Þ
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where

KG½ � ¼

%KK11
%KK12

%KK13

%KK21
%KK22

%KK23

%KK31
%KK32

%KK33

2
64

3
75;

MG½ � ¼

%MM11 0 0

0 %MM22 0

0 0 %MM33

2
64

3
75

and

f *Ug ¼ f *u *v *wgT:

The sub-matrices of ½KG� and ½MG� are given in Appendix A.

3.1. BOUNDARY CONDITIONS

In this study, curved panels with clamped and free edges are considered. For a clamped
edge along the edge x = 0 or x ¼ a; the boundary conditions are u ¼ v ¼ w ¼ bx ¼ 0:

For a free edge, two kinds of Kirchhoff’s boundary conditions are written as
(1) First kind of Kirchhoff’s conditions:

Vxz ¼ Qxz þ
@Mxs

@s
; Vsz ¼ Qsz þ

@Msx

@x
: ð17a; bÞ

(2) Second kind of Kirchhoff’s conditions:

Txs ¼ Nxs þ
Mxs

Rs

; Tsx ¼ Nsx: ð18a; bÞ

The boundary conditions for a C–F–F–F non-circular curved panel are

x ¼ 0 : u ¼ v ¼ w ¼ bx ¼ 0;

x ¼ a : Nxx ¼ Txs ¼ Mxx ¼ Vxz ¼ 0;

s ¼ 0 and s ¼ b : Nss ¼ Tsx ¼ Mss ¼ Vsz ¼ 0:

It should be noticed that when two adjacent edges of a panel are free, there is an additional
boundary condition for the corner force. It requires that the corner force Fc ¼ 2Mxs ¼ 0:
The modified matrices %BB

ð�Þ
of a C–F–F–F panel are deduced from identity matrices by

setting zeros to the following elements corresponding to zero boundary value:

B
ðuÞ
ii ¼ B

ðvÞ
ii ¼ B

ðwÞ
ii ¼ B

ðbxÞ
ii ¼ 0 for i ¼ 1; Nx þ 1; 2Nx þ 1; . . . ; ðNS � 1ÞNx þ 1;

B
ðNssÞ
ii ¼ B

ðTxsÞ
ii ¼ B

ðMssÞ
ii ¼ B

ðVszÞ
ii ¼ 0 for i ¼ 1; 2; . . . ;Nx;

B
ðNxxÞ
ii ¼ B

ðTsxÞ
ii ¼ B

ðMxxÞ
ii ¼ B

ðVxzÞ
ii ¼ 0 for i ¼ Nx; 2Nx; 3Nx; . . . ;NxNs;

B
ðNssÞ
ii ¼ B

ðTxsÞ
ii ¼ B

ðMssÞ
ii ¼ B

ðVszÞ
ii ¼ 0 for i ¼ ðNs � 1ÞNx þ 1; ðNs � 1ÞNx þ 2; . . . ;NxNs

and

B
ðMxsÞ
ii ¼ 0 for i ¼ Nx and NxNs:
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By introducing the modified matrices and solving the eigenvalue problem of equation (16),
the natural frequencies of a cantilever non-circular curved panel can be obtained.

4. RESULTS AND DISCUSSION

4.1. STUDY 1: CONVERGENCE AND COMPARISON

The first six non-dimensional frequencies of a square cantilever flat plate are obtained
by using the present approach with different grids of sampling points. Results are shown in
Table 1 together with the analytical solutions for the same plate obtained by Leissa [29]
using the Rayleigh–Ritz method. It can be seen that as the number of sampling points
increases, the non-dimensional frequency converges to values which are slightly less than
the corresponding ones obtained by Leissa. This is reasonable because Leissa’s results are
upper bounds of natural frequencies. Good convergence trends of the present results are
observed in this table. Results with satisfactory accuracy are obtained by using a grid of
9*9 sampling points, and the present results agree with the data by Leissa [29] to within
1%. A 9*9 grid is thus adopted for results presented in this section. It is noted that
accurate and convergent results could not be obtained by the conventional DQM used by
Malik and Bert [24].

A cantilever (C–F–F–F) circular curved panel with a uniform thickness is studied. The
material properties and the dimensions of the panel used in the present computation are

E ¼ 200 GPa; r ¼ 7860 kg=m3; v ¼ 0�3;

RS ¼ 0�6096 m; h ¼ 0�003 m; a ¼ b ¼ 0�3048 m:

Natural frequencies of the panel obtained by the present approach are shown in Table 2,
in which the results obtained by experiment and by the triangular finite element method [2]
and the analytical solution by the pb-2 Ritz method [8] are also presented. It can be seen
that the results by the present approach agree well with those obtained by the other
investigators. The first ten mode shapes of the curved panel are shown in Figure 3.
Comparison of the nodal lines of the vibration modes shows that the present results agree
qualitatively to those of the pb-2 Ritz method [8].
Table 1

Convergence of first six non-dimensional frequencies of a square cantilever plate by the DQM

No. of sampling points Mode

1 2 3 4 5 6

7*7 3�4717 8�5104 21�3458 28�4007 30�8654 55�5363
9*9 3�4702 8�5076 21�2914 27�1659 30�9630 54�1861
11*11 3�4705 8�5065 21�2858 27�2007 30�9573 54�2024
13*13 3�4707 8�5061 21�2840 27�1990 30�9550 54�1899
15*15 3�4708 8�5060 21�2836 27�1989 30�9542 54�1863
17*17 3�4709 8�5060 21�2837 27�1988 30�9540 54�1847
19*19 3�4709 8�5061 21�2836 27�1987 30�9539 54�1840
21*21 3�4710 8�5061 21�2837 27�1987 30�9539 54�1837
23*23 3.4710 8�5061 21�2837 27�1987 30�9539 54�1935
Leissa [29] 3�4917 8�5246 21�429 27�331 31�111 54�443



Table 2

Natural frequencies (Hz) of the CFFF curved panel (9*9 sampling points) (E=200 GPa,

r=7860 kg/m3, n=0�3, Rs=0�6096 m, h=0�003 m, a=b=0�3048 m)

Method Mode

1 2 3 4 5 6 7 8 9 10

FETy 86�601 139�17 251�30 348�59 393�42 533�37 752�09 746�37 790�10 813�84
Experimenty 85�6 134�5 259 351 395 531 743 751 790 809
pb-2z 84�406 135�35 244�23 336�45 379�95 521�60 715�19 716�94 759�81 790�71
Present 84�644 136�09 243�07 336�86 380�24 520�22 715�29 717�07 759�52 789�70

yOlson and Lindberg [2].
zLim and Liew [8].
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Figure 3. First 10 vibration modes of a cantilever fan blade.
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4.2. STUDY 2: EFFECT OF SHALLOWNESS RATIO (RS/b)

A cantilever curved panel with an aspect ratio a/b = 1 is considered. The shallowness
ratio (RS/b) of the panel ranges from 1 to 1000. The first five non-dimensional frequencies
are obtained and are shown in Figure 4. As the shallowness ratio increases, the bending
and the twisting rigidities decrease such that the natural frequencies decrease, and
the natural frequency of the first bending mode decreases more significantly than that of
the first twisting mode does. Figure 5 shows the fundamental frequencies versus the
shallowness ratio for curved panels with different aspect ratios a=b ¼ 5

2
; 3

2
; 1; 2

3
and 2

5
: It is

observed that the fundamental frequencies of curved panels with different aspect ratios
exhibit a similar trend that the fundamental frequencies decrease as the shallowness ratio
increases.

4.3. STUDY 3: EFFECT OF THICKNESS RATIO (h/b)

The fundamental frequencies of curved panels with a=b ¼ 1 and different thickness
ratios h/b = 0�005, 0�01, 0�02 and 0�05 versus the shallowness ratio are plotted in Figure 6.
It is observed that the thickness ratio has a significant effect on the non-dimensional
fundamental frequency of panels with a small shallowness ratio, say, RS/b 5 20, and has
no effect for panels with a large shallowness ratio, say, RS/b > 100.
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Figure 4. First five non-dimensional frequencies of a cantilever panel versus shallowness ratio (h/b=0�01,
a/b=1).
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Figure 5. Non-dimensional fundamental frequencies of cantilever curved panels with different aspect ratios.
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4.4. STUDY 4: CURVED PANEL WITH VARIABLE CURVATURE

Dynamic behaviors of curved panels with varying curvatures are studied. The panels are
parabolic in the chordwise direction, z ¼ cy2; where c is a shape parameter. The first eight
non-dimensional natural frequencies of parabolic panels with c = 0�25 and 0�8 are shown
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Figure 6. Non-dimensional fundamental frequency of a cantilever curved panel with different thickness ratios.

Table 3

First eight non-dimensional natural frequencies of parabolic curved panels, $ ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
(9*9 sampling points, a/b=1). Case (a) z=0�25y2, b/h=100; Case (b) z=0�8y2, b/h=40.

Case Method Mode

1 2 3 4 5 6 7 8

(a) DQM 10�507 16�876 30�448 41�695 47�292 65�157 88�852 89�235
Ritzy 10�500 17�005 30�352 41�869 47�187 64�314 90�097 90�325

(b) DQM 10�699 17�950 30�757 41�557 46�567 63�414 86�862 87�931
Ritzy 10�670 17�747 31�130 42�351 44�512 64�890 88�435 88�483

yWang [6].
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in Table 3, together with Wang’s results by using the Ritz method [6]. Good agreement
between the present and Wang’s results is observed.

5. CONCLUSION

Free-vibration characteristics of cantilever non-circular curved panels of rectangular
planforms are analyzed by using the DQM. Good convergence trends of the DQM are
observed from the vibration analysis of a cantilever curved panel. The effects of
shallowness, thickness and aspect ratios on natural frequencies of the panel are
investigated. Some conclusions are given as follows:

1. As the shallowness ratio of a cantilever curved panel increases, the bending and the
twisting rigidities decrease such that the natural frequencies decreases.
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2. The effect of thickness ratio on natural frequencies is more significant for panels with
a smaller shallowness ratio than for panels with a larger shallowness ratio.

3. As the aspect ratio of a cantilever curved panel increases, the fundamental frequency
decreases.
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APPENDIX A

Sub-matrices of KG½ � in equation (16) are

%KK11 ¼ � %WW X
%BB
ðNxxÞ %KK %WW X

%BB
ðuÞ � m %WW S

%BB
ðTsxÞ %KK %WW S

%BB
ðuÞ
;

%KK12 ¼ � %WW X
%BB
ðNxxÞ %KKn %WW S

%BB
ðvÞ � m %WW S

%BB
ðTsxÞ %KK %WW X

%BB
ðvÞ
;

%KK13 ¼ � %WW X
%BB
ðNxxÞ %KKn %RR

�1

s ;

%KK21 ¼ �m %WW X
%BB
ðTxsÞ %KK %WW S

%BB
ðuÞ � %WW S

%BB
ðNssÞ %KKn %WW X

%BB
ðuÞ
;

%KK22 ¼ � m %WW X
%BB
ðTxsÞ %KK %WW X

%BB
ðvÞ � m %WW X

%BB
ðTxsÞ %RR

�1

s
%DD %WW X

%BB
ðbsÞ %RR

�1

s þ m %WW X
%RR
�1

s
%DD %WW X

%BB
ðbsÞ %RR

�1

s

� %WW S
%BB
ðNssÞ %KK %WW S

%BB
ðvÞ � %RR

�1

s
%WW S

%BB
ðMssÞ %DD %WW S

%BB
ðbsÞ %RR

�1

s � m %RR
�1

s
%WW S

%BB
ðMxsÞ %DD %WW X

%BB
ðbsÞ %RR

�1

s ;

%KK23 ¼ m %WW X
%BB
ðTxsÞ %RR

�1

s
%DD %WW S

%BB
ðbxÞ %WW X

%BB
ðwÞ þ m %WW X

%BB
ðTxsÞ %RR

�1

s
%DD %WW X

%BB
ðbsÞ %WW S

%BB
ðwÞ

� m %WW X
%RR
�1

s
%DD %WW S

%BB
ðbxÞ %WW X

%BB
ðwÞ � m %WW X

%RR
�1

s
%DD %WW X

%BB
ðbsÞ %WW S

%BB
ðwÞ � %WW S

%BB
ðNssÞ %KK %RR

�1

s

þ %RR
�1

s
%WW S

%BB
ðMssÞ %DD %WW S

%BB
ðbsÞ %WW S

%BB
ðwÞ þ %RR

�1

s
%WW S

%BB
ðMssÞ %DDn %WW X

%BB
ðbxÞ %WW X

%BB
ðwÞ

þ m %RR
�1

s
%WW X

%BB
ðMxsÞ %DD %WW S

%BB
ðbxÞ %WW X

%BB
ðwÞ þ m %RR

�1

s
%WW X

%BB
ðMssÞ %DD %WW X

%BB
ðbsÞ %WW S

%BB
ðwÞ

;

%KK31 ¼ %RR
�1

s
%KKn %WW X

%BB
ðuÞ
;

%KK32 ¼ � %WW X
%BB
ðVxzÞ %WW X

%BB
ðMxxÞ %DDn %WW S

%BB
ðbsÞ %RR

�1

s � %WW X
%BB
ðVxzÞ %WW X

%BB
ðMxxÞ %DDð1� nÞ %WW X

%BB
ðbsÞ %RR

�1

s

þ m %WW X
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%BB
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%BB
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�1

s � %WW S
%BB
ðVszÞ %WW X

%BB
ðMxsÞ %DDð1� nÞ %WW S

%BB
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�1

s

� %WW S
%BB
ðVszÞ %WW S

%BB
ðMssÞ %DD %WW S

%BB
ðbsÞ %RR

�1

s þ m %WW S
%WW X

%BB
ðMsxÞ %DD %WW X

%BB
ðbsÞ %RR

�1

s þ %RR
�1

s
%KK %WW S

%BB
ðvÞ
;
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%KK33 ¼ %WW X
%BB
ðVxzÞ %WW X

%BB
ðMxxÞ %DD %WW X

%BB
ðbxÞ %WW X

%BB
ðwÞ þ %WW X

%BB
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%BB
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ðVxzÞ %WW S

%BB
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s ;

where m ¼ ð1� nÞ=2:
Sub-matrices of MG½ � in equation (16) are

%MM11 ¼ %MM22 ¼ %MM33 ¼ r %HH:
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